A GPU-Z validation file submitted to TechPowerUp yesterday has reportedly uncovered the GeForce RTX 3080 Max-Q's complete specifications. Gigabyte is reportedly the vendor of the device and aligns with the brand's latest Aorus and Aero gaming laptops that features the same GeForce RTX 3080 Max-Q. Nevertheless, the information should be taken with a pinch of salt since Nvidia hasn't officially announced its mobile Ampere graphics cards yet.
The GeForce RTX 3080 Max-Q reportedly utilizes the GA104 silicon, which is the same one that powers the GeForce RTX 3070 and RTX 3060 Ti. The die selection seems likely, since the GA104 silicon is both much smaller than the GA102 silicon that powers the GeForce RTX 3080 and the GA104 GPUs have much lower TDPs. By comparison, the RTX 3070 desktop GPU has a 220W TDP while the 3080 has a 320W TDP. Similarly, GA104 measures 392 mm², while the GA102 checks in at 628 mm². Given the more confined space in a laptop chassis, plus power restrictions, there's a strong incentive to using the smaller GA104 chip.
What's interesting is that the GPU-Z submission insinuates that Nvidia has endowed the GeForce RTX 3080 Max-Q with the full GA104 die. As a result, the mobile flagship Ampere SKU would have 48 enabled Streaming Multiprocessors (SMs) at its disposition, which boils down to 6,144 CUDA cores, 192 Tensor cores and 48 RT cores. For reference, the GeForce RTX 3070 only enjoys 46 out of the potential 48 SMs. Of course, it has the 3080 branding, so Nvidia had to do everything it could to help it bridge the gap between the desktop and mobile parts, but the rumored specs show just how far Nvidia has had to go.
Nvidia GeForce RTX 3080 Max-Q Specifications
GeForce RTX 3080 | GeForce RTX 3080 Max-Q* | GeForce RTX 3070 | |
---|---|---|---|
Architecture (GPU) | Ampere (GA102) | Ampere (GA104) | Ampere (GA104) |
CUDA Cores | 8,704 | 6,144 | 5,888 |
RT Cores | 68 | 48 | 46 |
Tensor Cores | 272 | 192 | 184 |
Texture Units | 272 | 192 | 184 |
Base Clock Rate | 1,440 MHz | 780 MHz | 1,500 MHz |
Boost Clock Rate | 1,710 MHz | 1,245 MHz | 1,730 MHz |
Memory Capacity | 10GB GDDR6X | 8GB GDDR6 | 8GB GDDR6 |
Memory Speed | 19 Gbps | 12 Gbps | 14 Gbps |
Memory Bus | 320-bit | 256-bit | 256-bit |
Memory Bandwidth | 760 GBps | 384 GBps | 448 GBps |
ROPs | 88 | 96 | 96 |
L2 Cache | 5MB | 4MB | 4MB |
TDP | 320W | 80W | 220W |
Transistor Count | 28.3 billion | 17.4 billion | 17.4 billion |
Die Size | 628 mm² | 392 mm² | 392 mm² |
*Specifications are unconfirmed.
The GeForce RTX 3080 Max-Q will purportedly rock a 780 MHz base clock and 1,245 MHz boost clock. However, bear in mind that this is the Max-Q variant that's tailored toward thin and light gaming laptops. The mobile, more commonly referred to as the Max-P, variant has more thermal headroom to stretch its legs. It's not etched in stone, but the Max-Q and Max-P variants typically feature TDP (thermal design power) ratings up to 80W and 150W, respectively.
Not that FP32 performance is the end-all and be-all metric, but the GeForce RTX 3080 Max-Q should be capable of delivering up to 15.30 TFLOPS of output. In contrast, the GeForce RTX 3070 delivers 20.31 TFLOPS, offering 32.7% higher FP32 performance, and the desktop 3080 is potentially twice as fast — and also draws four times as much power.
It's worth noting that if these specs are correct, Nvidia is alterting recent strategy quite significantly for its mobile parts. The RTX 20-series mobile chips used the same GPU as their desktop counterparts (so 2080 Max-Q was TU104, just like the 2080 desktop). The same was true of most GTX 10-series and GTX 900-series mobile chips. The last time Nvidia did the "desktop minus one" approach to mobile GPUs was with the 700-series, where the 780M used GK104 while the GTX 780 desktop used GK110. Just like Nvidia skipped doing mobile 2080 Ti and 1080 Ti, likely due to power requirements, it's effectively skipping the 3080 and 3090 performance tiers with Ampere.
In regards to the memory, the GeForce RTX 3080 Max-Q appears to come equipped with 8GB of GDDR6. However, this may be one of two configurations that Nvidia will offer since we've already seen retailer listings of a GeForce RTX 3080 Max-Q with 16GB of GDDR6.
While we can't speak for the 16GB variant, the 8GB version evidently runs at 12 Gbps across a 256-bit memory interface, contributing to a memory bandwidth up to 384 GBps. So, the GeForce RTX 3070's memory throughput is only 16.7% higher than the GeForce RTX 3080 Max-Q.
Since Ampere is a high performer, laptop vendors will probably pair the graphics card with the upcoming Intel Tiger Lake-H and AMD Ryzen 5000 (Cezanne) processors. The GeForce RTX 3080 Max-Q, like its other Ampere siblings, can leverage the PCIe 4.0 interface; however, only Tiger Lake-H supports the aforementioned interface. That doesn't mean that Ryzen 5000 will lose out on any performance though, since it hasn't been demostrated if PCIe 4.0 could actually boost graphical performance in a mobile package.
We're looking forward to testing actual RTX 30-series mobile parts and seeing how it stacks up to the existing RTX 20-series. Ampere desktop GPUs have increased TDP to help boost performance, but tuning a chip for maximum efficiency can still yield competitive results. A 20 percent cut in clock speeds, with lower voltages, often means close to half the power requirements. Will RTX 3080 Max-Q be able to surpass the RTX 2080 Super Max-Q? Almost certainly. The full power RTX 2080 Super Max-P will be a more difficult target.
"Max" - Google News
January 07, 2021 at 12:55AM
https://ift.tt/35fUZM2
GeForce RTX 3080 Max-Q Rumored to Use Full GA104 GPU - Tom's Hardware
"Max" - Google News
https://ift.tt/2YlVjXi
Bagikan Berita Ini
0 Response to "GeForce RTX 3080 Max-Q Rumored to Use Full GA104 GPU - Tom's Hardware"
Post a Comment